Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 357: 141918, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614394

RESUMO

Aeromonas spp. are frequently encountered in aquatic environments, with Aeromonas veronii emerging as an opportunistic pathogen causing a range of diseases in both humans and animals. Recent reports have raised public health concerns due to the emergence of multidrug-resistant Aeromonas spp. This is particularly noteworthy as these species have demonstrated the ability to acquire and transmit antimicrobial resistance genes (ARGs). In this study, we report the genomic and phenotypic characteristics of the A. veronii TR112 strain, which harbors a novel variant of the Vietnamese Extended-spectrum ß-lactamase-encoding gene, blaVEB-28, and two mcr variants recovered from an urban river located in the Metropolitan Region of São Paulo, Brazil. A. veronii TR112 strain exhibited high minimum inhibitory concentrations (MICs) for ceftazidime (64 µg/mL), polymyxin (8 µg/mL), and ciprofloxacin (64 µg/mL). Furthermore, the TR112 strain demonstrated adherence to HeLa and Caco-2 cells within 3 h, cytotoxicity to HeLa cells after 24 h of interaction, and high mortality rates to the Galleria mellonella model. Genomic analysis showed that the TR112 strain belongs to ST257 and presented a range of ARGs conferring resistance to ß-lactams (blaVEB-28, blaCphA3, blaOXA-912) and polymyxins (mcr-3 and mcr-3.6). Additionally, we identified a diversity of virulence factor-encoding genes, including those encoding mannose-sensitive hemagglutinin (Msh) pilus, polar flagella, type IV pili, type II secretion system (T2SS), aerolysin (AerA), cytotoxic enterotoxin (Act), hemolysin (HlyA), hemolysin III (HlyIII), thermostable hemolysin (TH), and capsular polysaccharide (CPS). In conclusion, our findings suggest that A. veronii may serve as an environmental reservoir for ARGs and virulence factors, highlighting its importance as a potential pathogen in public health.


Assuntos
Aeromonas veronii , Antibacterianos , Testes de Sensibilidade Microbiana , Rios , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Humanos , Antibacterianos/farmacologia , Rios/microbiologia , Aeromonas veronii/genética , Aeromonas veronii/isolamento & purificação , Aeromonas veronii/efeitos dos fármacos , Brasil , Células HeLa , Células CACO-2 , Animais , Farmacorresistência Bacteriana Múltipla/genética
2.
Molecules ; 26(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066575

RESUMO

Despite progress achieved, there is limited available information about the antibacterial activity of constituents of essential oils (EOs) from different medicinal-aromatic plants (MAPs) against fish pathogens and the complex interactions of blended EOs thereof. The present study aimed to investigate possible synergistic antimicrobial effects of EOs from seven Greek MAPs with strong potential against Aeromonas veronii bv. sobria, a fish pathogen associated with aquaculture disease outbreaks. The main objective was to evaluate whether blending of these EOs can lead to increased antimicrobial activity against the specific microorganism. A total of 127 combinations of EOs were prepared and their effect on A. veronii bv. sobria growth was tested in vitro. We examined both the inhibitory and bactericidal activities of the individual EOs and compared them to those of the blended EOs. The vast majority of the investigated combinations exhibited significant synergistic and additive effects, while antagonistic effects were evident only in a few cases, such as the mixtures containing EOs from rosemary, lemon balm and pennyroyal. The combination of EOs from Greek oregano and wild carrot, as well as the combinations of those two with Spanish oregano or savoury were the most promising ones. Overall, Greek oregano, savoury and Spanish oregano EOs were the most effective ones when applied either in pure form or blended with other EOs.


Assuntos
Aeromonas veronii/efeitos dos fármacos , Antibacterianos/farmacologia , Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Animais , Apiaceae , Técnicas de Química Sintética , Daucus carota , Sinergismo Farmacológico , Cromatografia Gasosa-Espectrometria de Massas , Infecções por Bactérias Gram-Negativas/veterinária , Concentração Inibidora 50 , Melissa , Mentha , Testes de Sensibilidade Microbiana , Origanum , Plantas Medicinais/química , Rosmarinus , Satureja
3.
Lett Appl Microbiol ; 73(2): 176-186, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33891720

RESUMO

Aeromonas spp. are associated with seafood-related outbreaks worldwide. In seafood industry, shellfish play a major role in global seafood production. With this emerging trend of shellfish consumption, shellfish-related bacterial infections are being reported frequently. Aeromonas spp. are natural contaminants found in shellfish. Although 36 species have been identified, some species including Aeromonas hydrophila, Aeromonas caviae and Aeromonas veronii biotype sobria have dragged major attention as foodborne pathogenic bacteria. The ability to elaborate a variety of virulence factors of Aeromonas spp. contributes to the pathogenic activities. Also, emerging antimicrobial resistance in Aeromonas spp. has become a huge challenge in seafood industry. Furthermore, multidrug resistance increases the risk of consumer health. Studies have supplied pieces of evidence about the emerging health risk of Aeromonas spp. isolated from seafood. Therefore, the present review was intended to highlight the prevalence, virulence and antimicrobial resistance of Aeromonas spp. isolated from various types of shellfish.


Assuntos
Aeromonas/efeitos dos fármacos , Aeromonas/patogenicidade , Farmacorresistência Bacteriana , Frutos do Mar/microbiologia , Virulência , Aeromonas caviae/efeitos dos fármacos , Aeromonas caviae/patogenicidade , Aeromonas hydrophila/efeitos dos fármacos , Aeromonas hydrophila/patogenicidade , Aeromonas veronii/efeitos dos fármacos , Aeromonas veronii/patogenicidade , Animais , Antibacterianos/farmacologia , Biofilmes , Contaminação de Alimentos , Microbiologia de Alimentos , Humanos , Prevalência , Alimentos Marinhos/microbiologia , Fatores de Virulência
4.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348848

RESUMO

Aeromonas veronii is one of the main pathogens causing various diseases in humans and animals. It is currently difficult to eradicate drug-resistant A. veronii due to the biofilm formation by conventional antibiotic treatments. In this study, a marine peptide-N6NH2 and its analogs were generated by introducing Orn or replacing with D-amino acids, Val and Pro; their enzymic stability and antibacterial/antibiofilm ability against multi-drug resistant (MDR) A. veronii ACCC61732 were detected in vitro and in vivo, respectively. The results showed that DN6NH2 more rapidly killed A. veronii ACCC61732 and had higher stability in trypsin, simulated gastric/intestinal fluid, proteinase K, and mouse serum than the parent peptide-N6NH2. DN6NH2 and other analogs significantly improved the ability of N6NH2 to penetrate the outer membrane of A. veronii ACCC61732. DN6NH2, N6PNH2 and V112N6NH2 protected mice from catheter-associated biofilm infection with MDR A. veronii ACCC61732, superior to N6NH2 and CIP. DN6NH2 had more potent efficacy at a dose of 5 µmol/kg (100% survival) in a mouse peritonitis model than other analogs (50-66.67%) and CIP (83.33%), and it inhibited the bacterial translocation, downregulated pro-inflammatory cytokines, upregulated the anti-inflammatory cytokine, and ameliorated multiple-organ injuries (including the liver, spleen, lung, and kidney). These data suggest that the analogs of N6NH2 may be a candidate for novel antimicrobial and antibiofilm agents against MDR A. veronii infections.


Assuntos
Aeromonas veronii/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Úlcera Cutânea/tratamento farmacológico , Aeromonas veronii/crescimento & desenvolvimento , Animais , Biofilmes/efeitos dos fármacos , Feminino , Infecções por Bactérias Gram-Negativas/complicações , Infecções por Bactérias Gram-Negativas/microbiologia , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Insuficiência de Múltiplos Órgãos/complicações , Insuficiência de Múltiplos Órgãos/microbiologia , Úlcera Cutânea/complicações , Úlcera Cutânea/microbiologia
5.
Colloids Surf B Biointerfaces ; 191: 111019, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32305623

RESUMO

Flumequine was nano-immobilized by self-assembly on iron oxide nanoparticles, called surface active maghemite nanoparticles (SAMNs). The binding process was studied and the resulting core-shell nanocarrier (SAMN@FLU) was structurally characterized evidencing a firmly immobilized organic canopy on which the fluorine atom of the antibiotic was exposed to the solvent. The antibiotic efficacy of the SAMN@FLU nanocarrier was tested on a fish pathogenic bacterium (Aeromonas veronii), a flumequine sensitive strain, in comparison to soluble flumequine and the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were assessed. Noteworthy, the MIC and MBC of soluble and nanoparticle bound drug were superimposable. Moreover, the interactions between SAMN@FLU nanocarrrier and microorganism were studied by transmission electron microscopy evidencing the ability of the complex to disrupt the bacterial wall. Finally, a preliminary in vivo test was provided using Daphnia magna as animal model. SAMN@FLU was able to protect the crustacean from the fatal consequences of a bacterial infection and showed no sign of toxicity. Thus, in contrast with the strength of the interaction, nano-immobilized FLU displayed a fully preserved antimicrobial activity suggesting the crucial role of fluorine in the drug mechanism of action. Besides the importance for potential applications in aquaculture, the present study contributes to the nascent field of nanoantibiotics.


Assuntos
Aeromonas veronii/efeitos dos fármacos , Antibacterianos/farmacologia , Daphnia/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Nanopartículas de Magnetita/química , Animais , Antibacterianos/química , Daphnia/microbiologia , Fluoroquinolonas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular
6.
Artigo em Inglês | MEDLINE | ID: mdl-32185140

RESUMO

Bacterial persisters are a small proportion of phenotypically heterogeneous variants with the transient capability to survive in high concentrations of antibiotics, causing recurrent infections in both human and aquatic animals. Transfer-messenger RNA (tmRNA), which was encoded by the ssrA gene, was identified as a determinant regulator mediating the persistence to ß-lactams in the pathogenic Aeromonas veronii C4. The deletion of tmRNA exhibited the increased ability of persister formation most probably due to the reduction of protein synthesis. Transcriptomic and metabolomic analyses revealed that the absence of tmRNA not only significantly elevated the intercellular levels of metabolite GlcNAc and promoted NaCl osmotic tolerance, but also upregulated the expression of metabolic genes in both the upstream biosynthesis pathway and the downstream metabolic flux of peptidoglycan (PG) biosynthesis. Finally, exogenous GlcNAc stimulated significant bacterial growth, enhanced content of GlcNAc in the cell wall, higher resistance to osmotic response, and higher persistence to cefotaxime in a concentration-dependent manner, implying its potential role in promoting the multiple phenotypes observed in tmRNA deletion strains. Taken together, these results hint at a potential mechanism of persister formation mediated by tmRNA against the ß-lactam challenges in A. veronii.


Assuntos
Acetilglucosamina/metabolismo , Aeromonas veronii/genética , Aeromonas veronii/metabolismo , Cefotaxima/farmacologia , RNA Bacteriano/genética , Aeromonas veronii/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica , Testes de Sensibilidade Microbiana , Osmorregulação , Peptidoglicano/metabolismo , Biossíntese de Proteínas , Regulação para Cima , beta-Lactamas/farmacologia
7.
Braz J Microbiol ; 51(2): 511-518, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31707718

RESUMO

Aeromonas are bacteria widely distributed in the environment, and some species are able to cause infections in humans, of which diarrhea is the most common. The objective of this study was to evaluate the presence of virulence and antimicrobial resistance associated characteristics in A. veronii biovar sobria strain 312M isolated from diarrheal stools. For this, the genome sequencing and phenotypical tests were performed. The draft genome annotation revealed several complete pathways associated with carbon metabolism and a mucin-desulfating sulfatase which may contribute to intestine colonization, and a large number of virulence-associated genes encoding structures associated with adhesion, toxins, and secretion systems. The strain exhibited swimming and swarming motility, biofilm formation, and hemolytic activity. It was resistant to ampicillin, ampicillin/sulbactam, and amoxicillin-clavulanic acid. Although a cphA gene encoding a narrow-spectrum carbapenase was identified in the strain genome, no carbapenemase activity was detected in the antimicrobial susceptibility test. When compared with other A. veronii with complete genomes, the main differences in virulence characteristics are related to lateral flagella and type III and VI secretion systems; the antimicrobial resistance spectrum also varied among strains. The results indicated that A. veronii biovar sobria 312M presents high virulence potential and resistance to limited classes of antimicrobials.


Assuntos
Aeromonas veronii/efeitos dos fármacos , Aeromonas veronii/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Fatores de Virulência/genética , Aeromonas veronii/patogenicidade , Biofilmes/crescimento & desenvolvimento , Diarreia/microbiologia , Fezes/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Virulência , Sequenciamento Completo do Genoma
8.
Microb Pathog ; 132: 124-128, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31054368

RESUMO

Pathogenic Aeromonas veronii results in great healthy and economic losses in fishes and human. The multiple drug tolerance of bacterial persister is the major cause for recurrent infections. Ubiquitous RNA-binding protein Hfq is liable for antibiotic tolerance and persisiter production. We showed that the hfq deletion in A. veronii retarded the growth, reduced the tolerances to diverse antibiotics, and lowered the persistence. Such effects might be mediated by the downregulations of RelE, CspD, ClpB, RpoS, OxyR, and upregulation of OppB. Our study supports the role of Hfq in persister formation and provides clues for the avoidance of recalcitrant infections.


Assuntos
Aeromonas veronii/crescimento & desenvolvimento , Aeromonas veronii/genética , Antibacterianos/farmacologia , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/fisiologia , Aeromonas veronii/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Testes de Sensibilidade Microbiana , RNA , Transcriptoma , Virulência/genética
9.
Fish Shellfish Immunol ; 87: 627-637, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30708057

RESUMO

Aeromonas veronii is an important type of gram-negative pathogen of human-livestock-aquatic animal and causes great economic losses in the aquaculture industry. Vaccination is an effective method of defence against A. veronii. There are many factors that restrict the use of vaccination, and the development of new oral vaccines is urgently needed. The selection of suitable antigens is of great significance for the development of aquaculture vaccines. Bacterial flagellin can specifically bind to TLR5 and induce the release of cytokines from the organism, which could be used in the development of vaccines. In this study, we constructed two recombinant Lactobacillus casei (L. casei) (surface-displayed or secretory) expressing the flaB of A. veronii and evaluated the effect of immune responses in common carp. The flaB gene (900 bp) of A. veronii was subcloned into the L. casei expression plasmids pPG-1 (surface-displayed) and pPG-2 (secretory). Western blot and immunofluorescence assays confirmed the expression of the recombinant flaB protein. Common carp immunized with Lc-pPG-1-flaB and Lc-pPG-2-flaB via oral administration route exhibited induction of antibody expression and innate immune responses. The results indicated that Lc-pPG-1-flaB and Lc-pPG-2-flaB can induce high levels of IgM, ACP, AKP, LZM and SOD activity in organisms, and Lc-pPG-1-flaB can induce even higher levels. The recombinant L. casei may effectively induce humoral immunity and increase the serum immunological index. Furthermore, leukocytes phagocytosis percentage and index of the recombinant L. casei were enhanced. The results of qRT-PCR showed that recombinant L. casei can significantly increase the expression of IL-10, IL-ß, IFN-γ and TNF-α in the tissues of immunized common carp, compared with control groups. Viable recombinant L. casei strains, which were delivered directly survived throughout the intestinal tract. Common carp that received Lc-pPG-1-flaB (66.7%) and Lc-pPG-2-flaB (53.3%) exhibited higher survival rates than the controls after challenge with the pathogen A. veronii. Our work indicated that Lc-pPG-1-flaB and Lc-pPG-2-flaB had beneficial effects on immune response and enhanced the disease resistance of common carp against A. veronii infection. The combination of flaB delivery and the Lactic acid bacteria (LAB) approach may be a promising method for the development of oral vaccines for treating A. veronii. In future research, we will focus on the colonization ability of LAB in the intestines and on the impact of these bacteria on intestinal flora.


Assuntos
Aeromonas veronii/efeitos dos fármacos , Vacinas Bacterianas/imunologia , Carpas/imunologia , Flagelina/farmacologia , Imunização/veterinária , Imunogenicidade da Vacina/imunologia , Lacticaseibacillus casei/imunologia , Administração Oral , Animais , Anticorpos Antibacterianos/imunologia , Formação de Anticorpos/imunologia , Flagelina/administração & dosagem , Vacinas Sintéticas/imunologia
10.
Biochem Biophys Res Commun ; 507(1-4): 407-413, 2018 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-30449596

RESUMO

Bacterial persisters comprise a small fraction of phenotypically heterogeneous variants with transient capability for survival when exposed to high concentrations of antibiotic. In aquatic pathogenic bacteria Aeromonas veronii, Small Protein B (SmpB), the core factor of trans-translation system, was identified as a new persistence-related gene. The SmpB deletion exhibited a higher susceptibility and lower persister cell formation under aminoglycosides antibiotics pressure compared with wild type. The transcriptional and translational activities of smpB gene were significantly enhanced by the gentamicin challenge in exponential phase, but not changed in stationary phase. The transcriptomic analysis revealed that the smpB deletion stimulated the production of proton-motive force (PMF). The cell survival induced by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) further verified that SmpB variation affected the quantities of PMF. Taken together, these results uncovered a novel mechanism of persister formation mediated by SmpB under aminoglycosides treatments.


Assuntos
Aeromonas veronii/metabolismo , Aminoglicosídeos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Força Próton-Motriz/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Aeromonas veronii/efeitos dos fármacos , Antibacterianos/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Deleção de Genes , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana , Biossíntese de Proteínas/efeitos dos fármacos
11.
J Fish Dis ; 41(9): 1339-1347, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29882217

RESUMO

Unusual persistent natural mortality occurred in a floating in-pond raceway system intensively stocked with channel and hybrid catfish beginning in early November 2016 up until March 2017. The temperature during the period of outbreak ranged from 7.2 to 23.7°C. Gross examination of freshly dead and moribund fish revealed pale gills, slight abdominal distension and swollen inflamed vents. Comprehensive necropsy of 20 fish demonstrated vast amounts of bloody ascitic fluid in the coelomic cavity, visceral congestion, splenomegaly and pale friable livers but macroscopically normal kidneys, suggesting systemic bacterial infection. Bacterial cultures were initiated from skin, gills and major internal organs. Following incubation, a mixture of three bacterial colony phenotypes was observed on agar plates. Presumptive biochemical characterization of the isolates followed by 16S-rRNA sequence analysis resulted in the identification of Aeromonas veronii, Streptococcus parauberis and Shewanella putrefaciens. Channel catfish juveniles were experimentally infected with the recovered isolates to fulfil Koch's postulates. Moreover, an antibiogram was used to evaluate the susceptibility of the isolates to antimicrobial drugs approved for use in aquaculture. Aquaflor was used successfully for treatment. Here, we report bacterial coinfection lead by A. veronii and the first identification of S. parauberis and S. putrefaciens from cultured catfish in North America.


Assuntos
Bactérias/isolamento & purificação , Coinfecção/microbiologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Positivas/veterinária , Ictaluridae/microbiologia , Estações do Ano , Aeromonas veronii/efeitos dos fármacos , Aeromonas veronii/genética , Aeromonas veronii/isolamento & purificação , Aeromonas veronii/fisiologia , Animais , Anti-Infecciosos/farmacologia , Aquicultura , Doenças dos Peixes/epidemiologia , Infecções por Bactérias Gram-Negativas/sangue , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/mortalidade , Infecções por Bactérias Gram-Positivas/sangue , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/mortalidade , América do Norte/epidemiologia , Lagoas/microbiologia , Propofol/administração & dosagem , Propofol/farmacologia , Propofol/uso terapêutico , RNA Ribossômico 16S/genética , Shewanella putrefaciens/efeitos dos fármacos , Shewanella putrefaciens/genética , Shewanella putrefaciens/isolamento & purificação , Infecções Estreptocócicas/veterinária , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Streptococcus/isolamento & purificação , Streptococcus/fisiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-28848017

RESUMO

Two adjacent colistin resistance gene variants, termed mcr-3.3 and mcr-3-like, were identified in the chromosome of an Aeromonas veronii isolate obtained from retail chicken meat. The variants showed 95.20% and 84.19% nucleotide sequence identity, respectively, to mcr-3 from porcine Escherichia coli Functional cloning indicated that only mcr-3.3 conferred polymyxin resistance in both E. coli and Aeromonas salmonicida The mcr-3.3-mcr-3-like segment was also observed in other Aeromonas species, including A. media, A. caviae, and A. hydrophila.


Assuntos
Aeromonas veronii/efeitos dos fármacos , Aeromonas veronii/genética , Galinhas/microbiologia , Farmacorresistência Bacteriana/genética , Aeromonas veronii/isolamento & purificação , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , China , Cromossomos Bacterianos , Clonagem Molecular , Colistina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Polimixinas/farmacologia
13.
Microb Drug Resist ; 23(4): 473-479, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27483342

RESUMO

To emphasize the importance of the appropriate use of antibiotics in aquaculture systems, the prevalence of resistance to 25 antimicrobials was investigated in 42 Aeromonas veronii strains isolated from farm-raised channel catfish in China in 2006-2012. All experiments were based on minimal inhibitory concentrations (MICs), and susceptibility was assessed according to the Clinical and Laboratory Standards Institute. Some isolates displayed antibiotic resistance to the latest-generation fluoroquinolones (i.e., ciprofloxacin, levofloxacin, and norfloxacin) in vitro. Therefore, we screened for genes conferring resistance to fluoroquinolones and performed conjugation experiments to establish the resistance mechanisms. The antibiotic resistance rates were 14.29-21.42% to three kinds of fluoroquinolones: ciprofloxacin, levofloxacin, and norfloxacin. Among the 42 strains isolated, 15 carried the qnrS2 gene. The MICs of the fluoroquinolones in transconjugants with qnrS2 were more than fourfold higher compared with the recipient. Among the fluoroquinolone-resistant A. veronii strains, eight had point mutations in both gyrA codon 83 (Ser83→Ile83) and parC codon 87 (Ser87→Ile87). However, five isolates with point mutations in parC codon 52 remained susceptible to the three fluoroquinolones. In conclusion, the mechanisms of fluoroquinolone resistance in A. veronii isolates may be related to mutations in gyrA codon 83 and parC codon 87 and the presence of the qnrS2 gene.


Assuntos
Aeromonas veronii/efeitos dos fármacos , DNA Girase/genética , DNA Topoisomerase IV/genética , Farmacorresistência Bacteriana/genética , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Aeromonas veronii/classificação , Aeromonas veronii/genética , Aeromonas veronii/isolamento & purificação , Animais , Antibacterianos/farmacologia , Aquicultura , Conjugação Genética , DNA Girase/metabolismo , DNA Topoisomerase IV/metabolismo , Fluoroquinolonas/farmacologia , Expressão Gênica , Infecções por Bactérias Gram-Negativas/microbiologia , Ictaluridae/microbiologia , Testes de Sensibilidade Microbiana , Mutação , Filogenia
14.
Antonie Van Leeuwenhoek ; 109(7): 945-56, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27075453

RESUMO

Aeromonas species are important pathogens of fishes and aquatic animals capable of infecting humans and other animals via food. Due to the paucity of pan-genomic studies on aeromonads, the present study was undertaken to analyse the pan-genome of three clinically important Aeromonas species (A. hydrophila, A. veronii, A. caviae). Results of pan-genome analysis revealed an open pan-genome for all three species with pan-genome sizes of 9181, 7214 and 6884 genes for A. hydrophila, A. veronii and A. caviae, respectively. Core-genome: pan-genome ratio (RCP) indicated greater genomic diversity for A. hydrophila and interestingly RCP emerged as an effective indicator to gauge genomic diversity which could possibly be extended to other organisms too. Phylogenomic network analysis highlighted the influence of homologous recombination and lateral gene transfer in the evolution of Aeromonas spp. Prediction of virulence factors indicated no significant difference among the three species though analysis of pathogenic potential and acquired antimicrobial resistance genes revealed greater hazards from A. hydrophila. In conclusion, the present study highlighted the usefulness of whole genome analyses to infer evolutionary cues for Aeromonas species which indicated considerable phylogenomic diversity for A. hydrophila and hitherto unknown genomic evidence for pathogenic potential of A. hydrophila compared to A. veronii and A. caviae.


Assuntos
Aeromonas caviae/genética , Aeromonas hydrophila/genética , Aeromonas veronii/genética , Aeromonas caviae/efeitos dos fármacos , Aeromonas caviae/patogenicidade , Aeromonas hydrophila/efeitos dos fármacos , Aeromonas hydrophila/patogenicidade , Aeromonas veronii/efeitos dos fármacos , Aeromonas veronii/patogenicidade , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Evolução Molecular , Transferência Genética Horizontal , Variação Genética , Genoma Bacteriano , Genótipo , Recombinação Homóloga , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Virulência/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA